Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Fundamental Research ; 2023.
Article in English | ScienceDirect | ID: covidwho-2320381

ABSTRACT

The coronavirus disease 2019 (COVID-19) continues to have a huge impact on health care and economic systems around the world. The first question to ponder is to understand the flow of COVID-19 in the spatial and temporal dimensions. We collected 7 Omicron clusters outbreaks in China since the outbreak of COVID-19 as of August 2022, selected outbreak cases from different Provinces and cities, and collected variable indicators that affect spillover outcomes, such as distance, migration index, PHSM index, daily reported cases number and so on. First, variables influencing spillover outcome events were assessed and analyzed retrospectively by constructing an infectious disease dynamics model and a classifier model, and secondly, the association between explanatory variables and spillover outcome events was constructed by fitting a logistics function. This study incorporates 7 influencing factors and classifies the spillover risk level into 3 levels. If different outbreak sites could be classified into different levels of spillover, it may reduce the pressure of epidemic prevention in some cities due to the lack of a uniform standard, which might be more conducive to achieving the goal of "dynamic zero".

2.
Front Med (Lausanne) ; 9: 1079842, 2022.
Article in English | MEDLINE | ID: covidwho-2238309

ABSTRACT

Objective: This study uses four COVID-19 outbreaks as examples to calculate and compare merits and demerits, as well as applicational scenarios, of three methods for calculating reproduction numbers. Method: The epidemiological characteristics of the COVID-19 outbreaks are described. Through the definition method, the next-generation matrix-based method, and the epidemic curve and serial interval (SI)-based method, corresponding reproduction numbers were obtained and compared. Results: Reproduction numbers (R eff ), obtained by the definition method of the four regions, are 1.20, 1.14, 1.66, and 1.12. Through the next generation matrix method, in region H R eff = 4.30, 0.44; region P R eff = 6.5, 1.39, 0; region X R eff = 6.82, 1.39, 0; and region Z R eff = 2.99, 0.65. Time-varying reproduction numbers (R t ), which are attained by SI of onset dates, are decreasing with time. Region H reached its highest R t = 2.8 on July 29 and decreased to R t < 1 after August 4; region P reached its highest R t = 5.8 on September 9 and dropped to R t < 1 by September 14; region X had a fluctuation in the R t and R t < 1 after September 22; R t in region Z reached a maximum of 1.8 on September 15 and decreased continuously to R t < 1 on September 19. Conclusion: The reproduction number obtained by the definition method is optimal in the early stage of epidemics with a small number of cases that have clear transmission chains to predict the trend of epidemics accurately. The effective reproduction number R eff , calculated by the next generation matrix, could assess the scale of the epidemic and be used to evaluate the effectiveness of prevention and control measures used in epidemics with a large number of cases. Time-varying reproduction number R t , obtained via epidemic curve and SI, can give a clear picture of the change in transmissibility over time, but the conditions of use are more rigorous, requiring a greater sample size and clear transmission chains to perform the calculation. The rational use of the three methods for reproduction numbers plays a role in the further study of the transmissibility of COVID-19.

4.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2207300

ABSTRACT

Objective This study uses four COVID-19 outbreaks as examples to calculate and compare merits and demerits, as well as applicational scenarios, of three methods for calculating reproduction numbers. Method The epidemiological characteristics of the COVID-19 outbreaks are described. Through the definition method, the next-generation matrix-based method, and the epidemic curve and serial interval (SI)-based method, corresponding reproduction numbers were obtained and compared. Results Reproduction numbers (Reff), obtained by the definition method of the four regions, are 1.20, 1.14, 1.66, and 1.12. Through the next generation matrix method, in region H Reff = 4.30, 0.44;region P Reff = 6.5, 1.39, 0;region X Reff = 6.82, 1.39, 0;and region Z Reff = 2.99, 0.65. Time-varying reproduction numbers (Rt), which are attained by SI of onset dates, are decreasing with time. Region H reached its highest Rt = 2.8 on July 29 and decreased to Rt < 1 after August 4;region P reached its highest Rt = 5.8 on September 9 and dropped to Rt < 1 by September 14;region X had a fluctuation in the Rt and Rt < 1 after September 22;Rt in region Z reached a maximum of 1.8 on September 15 and decreased continuously to Rt < 1 on September 19. Conclusion The reproduction number obtained by the definition method is optimal in the early stage of epidemics with a small number of cases that have clear transmission chains to predict the trend of epidemics accurately. The effective reproduction number Reff, calculated by the next generation matrix, could assess the scale of the epidemic and be used to evaluate the effectiveness of prevention and control measures used in epidemics with a large number of cases. Time-varying reproduction number Rt, obtained via epidemic curve and SI, can give a clear picture of the change in transmissibility over time, but the conditions of use are more rigorous, requiring a greater sample size and clear transmission chains to perform the calculation. The rational use of the three methods for reproduction numbers plays a role in the further study of the transmissibility of COVID-19.

5.
Infect Dis Poverty ; 11(1): 115, 2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2139423

ABSTRACT

BACKGROUND: There is a raising concern of a higher infectious Omicron BA.2 variant and the latest BA.4, BA.5 variant, made it more difficult in the mitigation process against COVID-19 pandemic. Our study aimed to find optimal control strategies by transmission of dynamic model from novel invasion theory. METHODS: Based on the public data sources from January 31 to May 31, 2022, in four cities (Nanjing, Shanghai, Shenzhen and Suzhou) of China. We segmented the theoretical curves into five phases based on the concept of biological invasion. Then, a spatial autocorrelation analysis was carried out by detecting the clustering of the studied areas. After that, we choose a mathematical model of COVID-19 based on system dynamics methodology to simulate numerous intervention measures scenarios. Finally, we have used publicly available migration data to calculate spillover risk. RESULTS: Epidemics in Shanghai and Shenzhen has gone through the entire invasion phases, whereas Nanjing and Suzhou were all ended in the establishment phase. The results indicated that Rt value and public health and social measures (PHSM)-index of the epidemics were a negative correlation in all cities, except Shenzhen. The intervention has come into effect in different phases of invasion in all studied cities. Until the May 31, most of the spillover risk in Shanghai remained above the spillover risk threshold (18.81-303.84) and the actual number of the spillovers (0.94-74.98) was also increasing along with the time. Shenzhen reported Omicron cases that was only above the spillover risk threshold (17.92) at the phase of outbreak, consistent with an actual partial spillover. In Nanjing and Suzhou, the actual number of reported cases did not exceed the spillover alert value. CONCLUSIONS: Biological invasion is positioned to contribute substantively to understanding the drivers and mechanisms of the COVID-19 spread and outbreaks. After evaluating the spillover risk of cities at each invasion phase, we found the dynamic zero-COVID strategy implemented in four cities successfully curb the disease epidemic peak of the Omicron variant, which was highly correlated to the way to perform public health and social measures in the early phases right after the invasion of the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , China/epidemiology
6.
Aging Dis ; 13(5): 1336-1347, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2115525

ABSTRACT

Since the outbreak, COVID-19 has spread rapidly across the globe due to its high infectivity and lethality. Age appears to be one of the key factors influencing the status and progression of SARS-CoV-2 infection, as multiple reports indicated that the majority of COVID-19 infections and severe cases are elderly. Most people simply assume that the elderly are more susceptible to SARS-CoV-2 than the young, but the mechanism behind it is still open to question. The older and younger people are at similar risk of infection because their infection process is the same and they must be exposed to the virus first. However, whether they will get sick after exposure to the virus and how their disease progresses depend on their immune mechanisms. In older populations, inflammation and immune aging reduce their ability to resist SARS-CoV-2 infection. Meanwhile, under the influence of comorbidities, ACE2 receptor and various cytokines undergo corresponding changes, thus accelerating the entry, replication, and transmission of SARS-CoV-2 in the body, promoting disease progression, and leading to severe illness and even death. In addition, the relatively fragile mental state of the elderly can also affect their timely recovery from COVID-19. Therefore, once older people are infected with SARS-CoV-2, they are more prone to severe illness and death with a poor prognosis, and they should strengthen protection to avoid exposure to the virus.

7.
China CDC Wkly ; 4(40): 895-901, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2067701

ABSTRACT

Mathematical models have played an important role in the management of the coronavirus disease 2019 (COVID-19) pandemic. The aim of this review is to describe the use of COVID-19 mathematical models, their classification, and the advantages and disadvantages of different types of models. We conducted subject heading searches of PubMed and China National Knowledge Infrastructure with the terms "COVID-19," "Mathematical Statistical Model," "Model," "Modeling," "Agent-based Model," and "Ordinary Differential Equation Model" and classified and analyzed the scientific literature retrieved in the search. We categorized the models as data-driven or mechanism-driven. Data-driven models are mainly used for predicting epidemics, and have the advantage of rapid assessment of disease instances. However, their ability to determine transmission mechanisms is limited. Mechanism-driven models include ordinary differential equation (ODE) and agent-based models. ODE models are used to estimate transmissibility and evaluate impact of interventions. Although ODE models are good at determining pathogen transmission characteristics, they are less suitable for simulation of early epidemic stages and rely heavily on availability of first-hand field data. Agent-based models consider influences of individual differences, but they require large amounts of data and can take a long time to develop fully. Many COVID-19 mathematical modeling studies have been conducted, and these have been used for predicting trends, evaluating interventions, and calculating pathogen transmissibility. Successful infectious disease modeling requires comprehensive considerations of data, applications, and purposes.

8.
Aging Dis ; 13(5): 1317-1322, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2056484
9.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2046310

ABSTRACT

Background The epidemiological characteristics and transmissibility of Coronavirus Disease 2019 (COVID-19) may undergo changes due to the mutation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) strains. The purpose of this study is to compare the differences in the outbreaks of the different strains with regards to aspects such as epidemiological characteristics, transmissibility, and difficulties in prevention and control. Methods COVID-19 data from outbreaks of pre-Delta strains, the Delta variant and Omicron variant, were obtained from the Chinese Center for Disease Control and Prevention (CDC). Case data were collected from China's direct-reporting system, and the data concerning outbreaks were collected by on-site epidemiological investigators and collated by the authors of this paper. Indicators such as the effective reproduction number (Reff), time-dependent reproduction number (Rt), rate of decrease in transmissibility (RDT), and duration from the illness onset date to the diagnosed date (DID)/reported date (DIR) were used to compare differences in transmissibility between pre-Delta strains, Delta variants and Omicron variants. Non-parametric tests (namely the Kruskal-Wallis H and Mean-Whitney U tests) were used to compare differences in epidemiological characteristics and transmissibility between outbreaks of different strains. P < 0.05 indicated that the difference was statistically significant. Results Mainland China has maintained a “dynamic zero-out strategy” since the first case was reported, and clusters of outbreaks have occurred intermittently. The strains causing outbreaks in mainland China have gone through three stages: the outbreak of pre-Delta strains, the outbreak of the Delta variant, and outbreaks involving the superposition of Delta and Omicron variant strains. Each outbreak of pre-Delta strains went through two stages: a rising stage and a falling stage, Each outbreak of the Delta variant and Omicron variant went through three stages: a rising stage, a platform stage and a falling stage. The maximum Reff value of Omicron variant outbreaks was highest (median: 6.7;ranged from 5.3 to 8.0) and the differences were statistically significant. The RDT value of outbreaks involving pre-Delta strains was smallest (median: 91.4%;[IQR]: 87.30–94.27%), and the differences were statistically significant. The DID and DIR for all strains was mostly in a range of 0–2 days, with more than 75%. The range of duration for outbreaks of pre-Delta strains was the largest (median: 20 days, ranging from 1 to 61 days), and the differences were statistically significant. Conclusion With the evolution of the virus, the transmissibility of the variants has increased. The transmissibility of the Omicron variant is higher than that of both the pre-Delta strains and the Delta variant, and is more difficult to suppress. These findings provide us with get a more clear and precise picture of the transmissibility of the different variants in the real world, in accordance with the findings of previous studies. Reff is more suitable than Rt for assessing the transmissibility of the disease during an epidemic outbreak.

10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.06.506714

ABSTRACT

The coronavirus SARS-CoV-2 has mutated quickly and caused significant global damage. This study characterizes two mRNA vaccines ZSVG-02 (Delta) and ZSVG-02-O (Omicron BA.1), and associating heterologous prime-boost strategy following the prime of a most widely administrated inactivated whole-virus vaccine (BBIBP-CorV). The ZSVG-02-O induces neutralizing antibodies that effectively cross-react with Omicron subvariants following an order of BA.1>BA.2>BA.4/5. In native animals, ZSVG-02 or ZSVG-02-O induce humoral responses skewed to the vaccine's targeting strains, but cellular immune responses cross-react to all variants of concern (VOCs) tested. Following heterologous prime-boost regimes, animals present comparable neutralizing antibody levels and superior protection across all VOCs. Single-boost only generated ancestral and omicron dual-responsive antibodies, probably by "recall" and "reshape" the prime immunity. New Omicron-specific antibody populations, however, appeared only following the second boost with ZSVG-02-O. Overall, our results support a heterologous boost with ZSVG-02-O, providing the best protection against current VOCs in inactivated virus vaccine-primed populations.

11.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1940094

ABSTRACT

Background Meteorological factors have been proven to affect pathogens;both the transmission routes and other intermediate. Many studies have worked on assessing how those meteorological factors would influence the transmissibility of COVID-19. In this study, we used generalized estimating equations to evaluate the impact of meteorological factors on Coronavirus disease 2019 (COVID-19) by using three outcome variables, which are transmissibility, incidence rate, and the number of reported cases. Methods In this study, the data on the daily number of new cases and deaths of COVID-19 in 30 provinces and cities nationwide were obtained from the provincial and municipal health committees, while the data from 682 conventional weather stations in the selected provinces and cities were obtained from the website of the China Meteorological Administration. We built a Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model to fit the data, then we calculated the transmissibility of COVID-19 using an indicator of the effective reproduction number (Reff). To quantify the different impacts of meteorological factors on several outcome variables including transmissibility, incidence rate, and the number of reported cases of COVID-19, we collected panel data and used generalized estimating equations. We also explored whether there is a lag effect and the different times of meteorological factors on the three outcome variables. Results Precipitation and wind speed had a negative effect on transmissibility, incidence rate, and the number of reported cases, while humidity had a positive effect on them. The higher the temperature, the lower the transmissibility. The temperature had a lag effect on the incidence rate, while the remaining five meteorological factors had immediate and lag effects on the incidence rate and the number of reported cases. Conclusion Meteorological factors had similar effects on incidence rate and number of reported cases, but different effects on transmissibility. Temperature, relative humidity, precipitation, sunshine hours, and wind speed had immediate and lag effects on transmissibility, but with different lag times. An increase in temperature may first cause a decrease in virus transmissibility and then lead to a decrease in incidence rate. Also, the mechanism of the role of meteorological factors in the process of transmissibility to incidence rate needs to be further explored.

12.
Front Public Health ; 9: 689575, 2021.
Article in English | MEDLINE | ID: covidwho-1775810

ABSTRACT

Background: Human immunodeficiency virus (HIV) is a single-stranded RNA virus that can weaken the body's cellular and humoral immunity and is a serious disease without specific drug management and vaccine. This study aimed to evaluate the epidemiologic characteristics and transmissibility of HIV. Methods: Data on HIV follow-up were collected in Nanning City, Guangxi Zhuang Autonomous, China. An HIV transmission dynamics model was built to simulate the transmission of HIV and estimate its transmissibility by comparing the effective reproduction number (Reff ) at different stages: the rapid growth period from January 2001 to March 2005, slow growth period from April 2005 to April 2011, and the plateau from May 2011 to December 2019 of HIV in Nanning City. Results: High-risk areas of HIV prevalence in Nanning City were mainly concentrated in suburbs. Furthermore, high-risk groups were those of older age, with lower income, and lower education levels. The Reff in each stage (rapid growth, slow growth, and plateau) were 2.74, 1.62, and 1.15, respectively, which suggests the transmissibility of HIV in Nanning City has declined and prevention and control measures have achieved significant results. Conclusion: Over the past 20 years, the HIV incidence in Nanning has remained at a relatively high level, but its development trend has been curbed. Transmissibility was reduced from 2.74 to 1.15. Therefore, the prevention and treatment measures in Nanning City have achieved significant improvement.


Subject(s)
HIV Infections , Basic Reproduction Number , China/epidemiology , HIV , HIV Infections/epidemiology , Humans
13.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1749552

ABSTRACT

Introduction Modeling on infectious diseases is significant to facilitate public health policymaking. There are two main mathematical methods that can be used for the simulation of the epidemic and prediction of optimal early warning timing: the logistic differential equation (LDE) model and the more complex generalized logistic differential equation (GLDE) model. This study aimed to compare and analyze these two models. Methods We collected data on (coronavirus disease 2019) COVID-19 and four other infectious diseases and classified the data into four categories: different transmission routes, different epidemic intensities, different time scales, and different regions, using R2 to compare and analyze the goodness-of-fit of LDE and GLDE models. Results Both models fitted the epidemic curves well, and all results were statistically significant. The R2 test value of COVID-19 was 0.924 (p < 0.001) fitted by the GLDE model and 0.916 (p < 0.001) fitted by the LDE model. The R2 test value varied between 0.793 and 0.966 fitted by the GLDE model and varied between 0.594 and 0.922 fitted by the LDE model for diseases with different transmission routes. The R2 test values varied between 0.853 and 0.939 fitted by the GLDE model and varied from 0.687 to 0.769 fitted by the LDE model for diseases with different prevalence intensities. The R2 test value varied between 0.706 and 0.917 fitted by the GLDE model and varied between 0.410 and 0.898 fitted by the LDE model for diseases with different time scales. The GLDE model also performed better with nation-level data with the R2 test values between 0.897 and 0.970 vs. 0.731 and 0.953 that fitted by the LDE model. Both models could characterize the patterns of the epidemics well and calculate the acceleration weeks. Conclusion The GLDE model provides more accurate goodness-of-fit to the data than the LDE model. The GLDE model is able to handle asymmetric data by introducing shape parameters that allow it to fit data with various distributions. The LDE model provides an earlier epidemic acceleration week than the GLDE model. We conclude that the GLDE model is more advantageous in asymmetric infectious disease data simulation.

14.
Epidemiology and infection ; 149, 2021.
Article in English | EuropePMC | ID: covidwho-1609638

ABSTRACT

The article aims to estimate and forecast the transmissibility of shigellosis and explore the association of meteorological factors with shigellosis. The mathematical model named Susceptible–Exposed–Symptomatic/Asymptomatic–Recovered–Water/Food (SEIARW) was used to explore the feature of shigellosis transmission based on the data of Wuhan City, China, from 2005 to 2017. The study applied effective reproduction number (Reff) to estimate the transmissibility. Daily meteorological data from 2008 to 2017 were used to determine Spearman's correlation with reported new cases and Reff. The SEIARW model fit the data well (χ2 = 0.00046, p > 0.999). The simulation results showed that the reservoir-to-person transmission of the shigellosis route has been interrupted. The Reff would be reduced to a transmission threshold of 1.00 (95% confidence interval (CI) 0.82–1.19) in 2035. Reducing the infectious period to 11.25 days would also decrease the value of Reff to 0.99. There was a significant correlation between new cases of shigellosis and atmospheric pressure, temperature, wind speed and sun hours per day. The correlation coefficients, although statistically significant, were very low (<0.3). In Wuhan, China, the main transmission pattern of shigellosis is person-to-person. Meteorological factors, especially daily atmospheric pressure and temperature, may influence the epidemic of shigellosis.

15.
Front Public Health ; 9: 799536, 2021.
Article in English | MEDLINE | ID: covidwho-1674410

ABSTRACT

Background: To date, there is a lack of sufficient evidence on the type of clusters in which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is most likely to spread. Notably, the differences between cluster-level and population-level outbreaks in epidemiological characteristics and transmissibility remain unclear. Identifying the characteristics of these two levels, including epidemiology and transmission dynamics, allows us to develop better surveillance and control strategies following the current removal of suppression measures in China. Methods: We described the epidemiological characteristics of SARS-CoV-2 and calculated its transmissibility by taking a Chinese city as an example. We used descriptive analysis to characterize epidemiological features for coronavirus disease 2019 (COVID-19) incidence database from 1 Jan 2020 to 2 March 2020 in Chaoyang District, Beijing City, China. The susceptible-exposed-infected-asymptomatic-recovered (SEIAR) model was fitted with the dataset, and the effective reproduction number (Reff ) was calculated as the transmissibility of a single population. Also, the basic reproduction number (R0) was calculated by definition for three clusters, such as household, factory and community, as the transmissibility of subgroups. Results: The epidemic curve in Chaoyang District was divided into three stages. We included nine clusters (subgroups), which comprised of seven household-level and one factory-level and one community-level cluster, with sizes ranging from 2 to 17 cases. For the nine clusters, the median incubation period was 17.0 days [Interquartile range (IQR): 8.4-24.0 days (d)], and the average interval between date of onset (report date) and diagnosis date was 1.9 d (IQR: 1.7 to 6.4 d). At the population level, the transmissibility of the virus was high in the early stage of the epidemic (Reff = 4.81). The transmissibility was higher in factory-level clusters (R0 = 16) than in community-level clusters (R0 = 3), and household-level clusters (R0 = 1). Conclusions: In Chaoyang District, the epidemiological features of SARS-CoV-2 showed multi-stage pattern. Many clusters were reported to occur indoors, mostly from households and factories, and few from the community. The risk of transmission varies by setting, with indoor settings being more severe than outdoor settings. Reported household clusters were the predominant type, but the population size of the different types of clusters limited transmission. The transmissibility of SARS-CoV-2 was different between a single population and its subgroups, with cluster-level transmissibility higher than population-level transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , China/epidemiology , Cities , Humans
16.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1639437

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
17.
China CDC Wkly ; 3(50): 1071-1074, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1567031

ABSTRACT

INTRODUCTION: Vaccination booster shots are completely necessary for controlling breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China. The study aims to estimate effectiveness of booster vaccines for high-risk populations (HRPs). METHODS: A vaccinated Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model was developed to simulate scenarios of effective reproduction number (R eff ) from 4 to 6. Total number of infectious and asymptomatic cases were used to evaluated vaccination effectiveness. RESULTS: Our model showed that we could not prevent outbreaks when covering 80% of HRPs with booster unless R eff =4.0 or the booster vaccine had efficacy against infectivity and susceptibility of more than 90%. The results were consistent when the outcome index was confirmed cases or asymptomatic cases. CONCLUSIONS: An ideal coronavirus disease 2019 (COVID-19) booster vaccination strategy for HRPs would be expected to reach the initial goal to control the transmission of the Delta variant in China. Accordingly, the recommendation for the COVID-19 booster vaccine should be implemented in HRPs who are already vaccinated and could prevent transmission to other groups.

18.
Front Psychol ; 12: 744691, 2021.
Article in English | MEDLINE | ID: covidwho-1477873

ABSTRACT

When a major, sudden infectious disease occurs, people tend to react emotionally and display reactions such as tension, anxiety, fear, depression, and somatization symptoms. Social media played a substantial awareness role in developing countries during the outbreak of coronavirus disease 2019 (COVID-19). This study aimed to analyze public opinion regarding COVID-19 and to explore the trajectory of psychological status and online public reactions to the COVID-19 pandemic by examining online content from Weibo in China. This study consisted of three steps: first, Weibo posts created during the pandemic were collected and preprocessed on a large scale; second, public sentiment orientation was classified as "optimistic/pessimistic/neutral" orientation via natural language processing and manual determination procedures; and third, qualitative and quantitative analyses were conducted to reveal the trajectory of public psychological status and online public reactions during the COVID-19 pandemic. Public psychological status differed in different periods of the pandemic (from December 2019 to May 2020). The newly confirmed cases had an almost 1-month lagged effect on public psychological status. Among the 15 events with high impact indexes or related to government decisions, there were 10 optimism orientation > pessimism orientation (OP) events (2/3) and 5 pessimism orientation > optimism orientation (PO) events (1/3). Among the top two OP events, the high-frequency words were "race against time" and "support," while in the top two PO events, the high-frequency words were "irrationally purchase" and "pass away." We proposed a hypothesis that people developed negative self-perception when they received PO events, but their cognition was developed by how these external stimuli were processed and evaluated. These results offer implications for public health policymakers on understanding public psychological status from social media. This study demonstrates the benefits of promoting psychological healthcare and hygiene activity in the early period and improving risk perception for the public based on public opinion and the coping abilities of people. Health managers should focus on disseminating socially oriented strategies to improve the policy literacy of Internet users, thereby facilitating the disease prevention work for the COVID-19 pandemic and other major public events.

19.
Parasit Vectors ; 14(1): 483, 2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1430472

ABSTRACT

BACKGROUND: During the period of the coronavirus disease 2019 (COVID-19) outbreak, strong intervention measures, such as lockdown, travel restriction, and suspension of work and production, may have curbed the spread of other infectious diseases, including natural focal diseases. In this study, we aimed to study the impact of COVID-19 prevention and control measures on the reported incidence of natural focal diseases (brucellosis, malaria, hemorrhagic fever with renal syndrome [HFRS], dengue, severe fever with thrombocytopenia syndrome [SFTS], rabies, tsutsugamushi and Japanese encephalitis [JE]). METHODS: The data on daily COVID-19 confirmed cases and natural focal disease cases were collected from Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial CDC). We described and compared the difference between the incidence in 2020 and the incidence in 2015-2019 in four aspects: trend in reported incidence, age, sex, and urban and rural distribution. An autoregressive integrated moving average (ARIMA) (p, d, q) × (P, D, Q)s model was adopted for natural focal diseases, malaria and severe fever with thrombocytopenia syndrome (SFTS), and an ARIMA (p, d, q) model was adopted for dengue. Nonparametric tests were used to compare the reported and the predicted incidence in 2020, the incidence in 2020 and the previous 4 years, and the difference between the duration from illness onset date to diagnosed date (DID) in 2020 and in the previous 4 years. The determination coefficient (R2) was used to evaluate the goodness of fit of the model simulation. RESULTS: Natural focal diseases in Jiangsu Province showed a long-term seasonal trend. The reported incidence of natural focal diseases, malaria and dengue in 2020 was lower than the predicted incidence, and the difference was statistically significant (P < 0.05). The reported incidence of brucellosis in July, August, October and November 2020, and SFTS in May to November 2020 was higher than that in the same period in the previous 4 years (P < 0.05). The reported incidence of malaria in April to December 2020, HFRS in March, May and December 2020, and dengue in July to November 2020 was lower than that in the same period in the previous 4 years (P < 0.05). In males, the reported incidence of malaria in 2020 was lower than that in the previous 4 years, and the reported incidence of dengue in 2020 was lower than that in 2017-2019. The reported incidence of malaria in the 20-60-year age group was lower than that in the previous 4 years; the reported incidence of dengue in the 40-60-year age group was lower than that in 2016-2018. The reported cases of malaria in both urban and rural areas were lower than in the previous 4 years. The DID of brucellosis and SFTS in 2020 was shorter than that in 2015-2018; the DID of tsutsugamushi in 2020 was shorter than that in the previous 4 years. CONCLUSIONS: Interventions for COVID-19 may help control the epidemics of natural focal diseases in Jiangsu Province. The reported incidence of natural focal diseases, especially malaria and dengue, decreased during the outbreak of COVID-19 in 2020. COVID-19 prevention and control measures had the greatest impact on the reported incidence of natural focal diseases in males and people in the 20-60-year age group.


Subject(s)
Brucellosis/epidemiology , COVID-19/prevention & control , Dengue/epidemiology , Malaria/epidemiology , Adult , Age Distribution , Aged , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Female , Humans , Incidence , Male , Middle Aged , Physical Distancing , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Travel/statistics & numerical data , Young Adult
20.
Front Med (Lausanne) ; 8: 701836, 2021.
Article in English | MEDLINE | ID: covidwho-1394782

ABSTRACT

Background: It is much valuable to evaluate the comparative effectiveness of the coronavirus disease 2019 (COVID-19) prevention and control in the non-pharmacological intervention phase of the pandemic across countries and identify useful experiences that could be generalized worldwide. Methods: In this study, we developed a susceptible-exposure-infectious-asymptomatic-removed (SEIAR) model to fit the daily reported COVID-19 cases in 160 countries. The time-varying reproduction number (R t ) that was estimated through fitting the mathematical model was adopted to quantify the transmissibility. We defined a synthetic index (I AC ) based on the value of R t to reflect the national capability to control COVID-19. Results: The goodness-of-fit tests showed that the SEIAR model fitted the data of the 160 countries well. At the beginning of the epidemic, the values of R t of countries in the European region were generally higher than those in other regions. Among the 160 countries included in the study, all European countries had the ability to control the COVID-19 epidemic. The Western Pacific Region did best in continuous control of the epidemic, with a total of 73.76% of countries that can continuously control the COVID-19 epidemic, while only 43.63% of the countries in the European Region continuously controlled the epidemic, followed by the Region of Americas with 52.53% of countries, the Southeast Asian Region with 48% of countries, the African Region with 46.81% of countries, and the Eastern Mediterranean Region with 40.48% of countries. Conclusion: Large variations in controlling the COVID-19 epidemic existed across countries. The world could benefit from the experience of some countries that demonstrated the highest containment capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL